An intersection-union theorem for integer sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An intersection theorem for supermatroids

We generalize the matroid intersection theorem to distributive supermatroids, a structure that extends the matroid to the partially ordered ground set. Distributive supermatroids are special cases of both supermatroids and greedoids, and they generalize polymatroids. This is the first good characterization proved for the intersection problem of an independence system where the ground set is par...

متن کامل

Extension of Krull's intersection theorem for fuzzy module

‎In this article we introduce $mu$-filtered fuzzy module with a family of fuzzy submodules.  It shows the relation between $mu$-filtered fuzzy modules and crisp filtered modules by level sets. We investigate fuzzy topology on the $mu$-filtered fuzzy module and apply that to introduce fuzzy completion. Finally we extend Krull's intersection theorem of fuzzy ideals by using concept $mu$-adic comp...

متن کامل

More on the Erdös-Ko-Rado Theorem for Integer Sequences

For positive integers n, q, t we determine the maximum number of integer sequences (a1, . . . , an) which satisfy 1 ≤ ai ≤ q for 1 ≤ i ≤ n, and any two sequences agree in at least t positions. The result gives an affirmative answer to a conjecture of Frankl and Füredi.

متن کامل

An intersection theorem for systems of sets

Erdos and Rado defined a A-system, as a family in which every two members have the same intersection. Here we obtain a new upper bound on the maximum cardinality q ( n , q ) of an n-uniform family not containing any A-system of cardinality q. Namely, we prove that, for any a > 1 and q , there exists C = C(a, q ) such that, for any n ,

متن کامل

An intersection theorem for weighted sets

A weight function ! : 2 → R¿0 from the set of all subsets of [n]={1; : : : ; n} to the nonnegative real numbers is called shift-monotone in {m+1; : : : ; n} if !({a1; : : : ; aj})¿!({b1; : : : ; bj}) holds for all {a1; : : : ; aj}; {b1; : : : ; bj}⊆ [n] with ai6bi; i = 1; : : : ; j, and if !(A)¿!(B) holds for all A; B⊆ [n] with A⊆B and B\A⊆{m + 1; : : : ; n}. A family F⊆ 2 is called intersectin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1985

ISSN: 0012-365X

DOI: 10.1016/0012-365x(85)90076-7