An intersection-union theorem for integer sequences
نویسندگان
چکیده
منابع مشابه
An intersection theorem for supermatroids
We generalize the matroid intersection theorem to distributive supermatroids, a structure that extends the matroid to the partially ordered ground set. Distributive supermatroids are special cases of both supermatroids and greedoids, and they generalize polymatroids. This is the first good characterization proved for the intersection problem of an independence system where the ground set is par...
متن کاملExtension of Krull's intersection theorem for fuzzy module
In this article we introduce $mu$-filtered fuzzy module with a family of fuzzy submodules. It shows the relation between $mu$-filtered fuzzy modules and crisp filtered modules by level sets. We investigate fuzzy topology on the $mu$-filtered fuzzy module and apply that to introduce fuzzy completion. Finally we extend Krull's intersection theorem of fuzzy ideals by using concept $mu$-adic comp...
متن کاملMore on the Erdös-Ko-Rado Theorem for Integer Sequences
For positive integers n, q, t we determine the maximum number of integer sequences (a1, . . . , an) which satisfy 1 ≤ ai ≤ q for 1 ≤ i ≤ n, and any two sequences agree in at least t positions. The result gives an affirmative answer to a conjecture of Frankl and Füredi.
متن کاملAn intersection theorem for systems of sets
Erdos and Rado defined a A-system, as a family in which every two members have the same intersection. Here we obtain a new upper bound on the maximum cardinality q ( n , q ) of an n-uniform family not containing any A-system of cardinality q. Namely, we prove that, for any a > 1 and q , there exists C = C(a, q ) such that, for any n ,
متن کاملAn intersection theorem for weighted sets
A weight function ! : 2 → R¿0 from the set of all subsets of [n]={1; : : : ; n} to the nonnegative real numbers is called shift-monotone in {m+1; : : : ; n} if !({a1; : : : ; aj})¿!({b1; : : : ; bj}) holds for all {a1; : : : ; aj}; {b1; : : : ; bj}⊆ [n] with ai6bi; i = 1; : : : ; j, and if !(A)¿!(B) holds for all A; B⊆ [n] with A⊆B and B\A⊆{m + 1; : : : ; n}. A family F⊆ 2 is called intersectin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1985
ISSN: 0012-365X
DOI: 10.1016/0012-365x(85)90076-7